Step of Proof: assert_of_eq_int
9,38
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
assert
of
eq
int
:
1.
x
:
2.
y
:
3.
x
=
y
if
x
=
y
then tt else ff
latex
by ((RWH (ReduceThenC (Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t
) inil_term)) 0)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
tt
C
.
Definitions
P
Q
,
P
Q
,
t
T
,
True
,
T
,
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
btrue
wf
,
bool
wf
,
true
wf
,
squash
wf
,
assert
wf
origin